Category Archives: Teknologi

Mengapa 1PA menjadi The Best Engine 2014 ??? Knp tdk Engine CB150SF ???

IMG_1818

Di dalam alam pikiran saya yg rada soak ini…. sangat tidak aneh jika mesin NVL sampai bisa menjadi The Best Engine of The Year 2014 versi majalah Otomotif  ( silakan klik ! )….

Masih inget kan betapa fenomenalnya peluncuran Vixion dulu ???? saat itu semua best vallue motor 150cc ada di Vixion , dan sampe sekarang apa yg terjadi ??? yupsssss…… motor itu sendiri mengalami pengembangan pengembangan yg lumayan berarti, apalagi secara engine dijadikan lebih baik lagi dari old vixion ( klaim Yamaha ) ….. so? valuenya adalah motor yg sdh baik menjadi lebih baik lagi !!!!!

Kwemudian mari kita raba motor kompetitor , aitu CBSF !!!!

Motor ini mempunyai spek yg baik, mesin yg berkonstruksi lbh canggih, bahkan konon lebih cept di jalanan drpd NVL. Kemudian Bodi seramping old vixion dan suspensi belakang yg sdh menganut pro-link bukan merk modem. artinya apa ???? secara spesifikasi harusnya CBSF lebih value ketimbang NVL…. tetapi apa yg terjadi ??????

Menurut saya, satu hal yg pasti pd mesin CBSF adalah dia “turunan” mesin CBR150 ( yg konon memang bagus itu ) dan apa yg salah ??? nggada yg salah tuh …. tetapi yg namanya turunan ya dpt diartikan downgrade / spekdown. Knp sy ngomong demikian ??? krn sy sdh mengendarai dua-duanya. Riding feelingnya sangat berbeda antara CBSF dan CBR150, apalagi quality riding dan handlingnya. yaaahhhhhh…. memang beda genre sih…. tp itu tdak sy alami pada NVL berbanding oldVixion !!!!!!

Mesin pd CBSF menurut sy lebih berisik dr mesin New CBR 150 yg sdh injeksi . Kemudian transmisi / perppindahan gigi jg keliatan banget lbh kasar , belum lagi suspensi yg katanya sdh pake link system, kok masih enakan suspensi CBR. Beda harga ???? tentu saja….. tp coba bayangkan kalo itu motor tdk built up ???

 

Paling tidak , itulah kesimpulan yg dapet sy ambil dari mesin 1PA vs mesin CBSF …….. yg satunya pengembangan vs satunya lagi downngrade !!!! Nah…. kalo sy disuruh milih???? tentu sy tetep pilih mesin CBSF …. nggada lain, konstruksi DOHC msh yg terbaik untuk digali powernya !! Sedangkan tipikal overstroke pd mesin NVL kurang cocok bbuat riding karakter saya….. dan satu lagi …. dimana2 yg namanya pompa air radiator di silinder head sangat rawan !!!! krn lebh panas drpd area as kruk, maka seal2 juga dpastikan berumur lbh pendek, dan jika getas maka air mudah masuk kedalam mesin !!!!!

r15150ccengine

 

Advertisements

ninja 2 tak jd injeksi ??? oraaa mungkiiinnnnn……

Kawaski Ninja 150CC

munggkkiiinnnnn wwaaaeee…… !!!! jare sopo ora mungkinnnn ????

Tapi ????? ahha…. ini dia !!!! menurut wangsit yg sy dpt setelh bertapa dibwh pohon java moss, pada dasarnya tipe injeksi ada dua macem, iaitu :

1. Indirect injection, bahasa awamanya aialah injeksi menggantikan spuyer pd karburator, dan ini sekarang jamak dipakai disemua motor disini kecuali mesin 2 tak. Kabut bahan bakar pd mesin dua tak butuh dicampur lsg sama oli samping, selain itu masih ada gap antara inlet dan outlet BBM saat TMA…. jadi yg pasti msh ada bensin kebuang lwt kenalpot. Jalan panjang yg dilalui pada Indirest Injection menjadikan tidak efisien dan nggak signifikan untuk menekan polusi tidur.

clip_image0024_thumb

2. Direct Injection, maksutnya ialah injektor langsung ditemplokin di ruang bakar, jadi ngga lewat manifold …. yg bikin ngga mungkin adalah teknologi ini muahalllll… butuh injektor yg tahan kompresi mesin serta tetep bersih nozzlenya…. wani piro ??? bila dipasang di Ninja 2 tak ???

untuk lebih jelasnya liat pict verikut ini :

differences

dan pada mesin 2 tak gambarannya sbb :

2TInjectioncomparisonsmall

Sudah jelas to kenapa Ninja 150cc 2 tak ngga mungkin di injeksi ???

Dan ini nih ada beberapa pengembangan yg bahkan sekelas Bill Gates pun tertarik berinvestasi pada mesin 2 tak :

7T8JTH2H4P9GPT2M-l opoc-engine-explained-22609_2Namanya mesin ialah “opposed-piston opposed-cylinder” (OPOC)

Berikut penjelasan dari kompas otomotif ttg mesin 2 tak canggih ini :

Generasi Ke-6 “Generasi keenam mesin OPOC sudah mencapai tahap tes pada dinamometer,” ungkap CEO EcoMotors, Don Runkle kepada majalah Automotive Engineering International. Ia memperkirakan, hasil tes sudah bisa diperoleh tahun depan. OPOC dirancang menggunakan sistem injeksi langsung. Tak kalah menarik dilengkapi pula dengan turbocharger dan sudah siap diproduksi dalam dua atau tiga tahun mendatang.

Mesin ini menggunakan dasar arsitek modular dengan berbagai diameter. Saat ini digunakan diameter piston 100, 75, 65 dan 30 mm. Setiap “power module”, sepasang silinder dengan posisi berlawanan harisontal, menggunakan dua piston.

Kedua piston bekerja melalui sepasang setang piston (con-rod) pendek dan panjang yang dihubungkan ke poros engkol. Piston dengan posis berlawanan menggunakan ruang bakar yang sama pada setiap silinder. Tenaga mesin bisa ditingkatkan lagi dengan menambah set silinder.

“Tes dinamometer secara ekstensif untuk versi diesel (diameter 100 mm), memperlihatkan emisi yang rendah. Efisiensi kerja mesin yang sangat tinggi. Tenaga yang dihasilkan sesuai dengan perhitungan,“ ungkap Runkle.

Tes sebelumnya sudah memperlihatkan, efisiensi bahan bakar mesin OPOC 50 persen lebih baik dari mesin konvensional dengan kapasitas sama. Sementara versi bensin juga sedang dites!

Sekian dulu dari saya, salam Soakkkk foreva …. !!! wkwkkkk…

Pengirit BBM : Hydrogen Crack System stage 1

 Penjelasan =
1. Saat piston naik turun, terdapat kevakuman di leher manifold.
2. Kevakuman tersebut akan menghisap apaun yg ada di katalis/generator
3. Krn ada hisapan, maka di tanki air keluar gelembung air
4. Shg udara kosong di tabung menjadi udara yg basah
5. Udara basah tsb melalui katalisator/generator. Karena ada aliran udara basah plus panas knalpot, maka terjadi crack antar molekul
6. molekul tsblah yg masuk ke manifold dan terus ke ruang bakar shg menambah molekul BBM yg sudah ada.
7. otomatis terjadi penambahan power di mesin.
8. Pengalaman penulis , saat bensin di tanki habis, mesin tetep bisa menyala stasioner… ( tapi ya buat jalan sama aja ngga kuat )
9. Saat diisi non air , misal alkohol, bensin, pertamax dan sebagainya.. tenaga tambah jozzz gandhozz tetapi cepet abisss.

Kelemahan =
1. Kevakuman hanya terjadi di rpm rendah, sehingga di rpm tinggi tidak terjadi gelembung udara sehingga alat ini tdk bisa maksimal bekerja.
2. Membutuhkan selang tahan panas ( sulit dicari di daerah pedesaan kalo pas turing jauh dan selang pecah )
3. Pada motor ber-gigi ( bebek maupun sport ) dg setelan karbu standard , maka begitu generator panas ( krn knalpot ) maka rpm mesin akan naik sendiri, shg akan sulit untuk pindah gigi ( walaupun berkopling ). Disinilah letak masalahnya, jika karbu disetel lean/miskin mesin bisa stasioner, tetapi di rpm tinggi akan miskin bensin pula shg selain panas juga kekurangan power, jika disetel standart dan basah, ya rpm makin tinggi saat stasioner…. lhoh kan… susah ya ???

Solusi = yg Jadi Pe Er ialah bagaimana caranya saat rpmtinggi gelembung tetep keluar dan bahakan kalo bisa yg banyak ??? hehehhe…..

Spuyer ketiga atau turbo jet ???

Ini sekedar me-refresh ingatan alias kenangan lama saya. Jika anda ingin menaikkan power mesin secara gampang tanpa mengutak atik karbu dan engine, ataua mungkin anda baru saja mengganti knalpot standart dg knalpot racing dan tidak ingin bongkar-bongkar karbu bwt ganti spuyer, tidak ada salahnya melirik teknologi satu ini.
 Teknologi ini sebenernya sih sudah juadul… seingat saya sudah dipake oleh roadracer kita sejak th 1990an atau malah sebelumnya. Jika menilik fungsi, spuyer ketiga ini sebenernya hanya memberi tambahan asupan bahan bakar ke karburator, cm hebadnya ialah bisa disetting mau dikasi di rpm atas, menengah atau malah bawah. Jika dikasih di rpm atas, temtu saja akan jadi semacam turbo … ada semacam tambahan gizi pas motor high rpm. Jika dikasih bawah atau menengah ya tentu saja bisa tuh setelan pilot dan main jet disetel “lean” … ( disini kita tdk ngomong irit lho ya … )

Skema teknologi sederhana “Third Jet ” 
Lihat gbr diatas ! Jika third jet ditaruh di posisi atas karbu, dimana saat high rpm skep mengangkat maksimal, dan ini berbanding lurus dengan sedotan piston yg makin menggila, maka third jet ini otomatis akan bekerja dikarenakan daya hisap tersebut, dan demikian seterusnya jika diletakkan pd posisi tengah maupun bawah.
Cara membuatnya gampang sekali, ambil aja selang pembuangan bensin dari karbu, jgn lupa buka sekrup mangkok buangan bensin. Kemudian pasang pd ujungnya sebuah spuyer, kalo ttg ukuran spuyer silaken dicoba-coba… mana yg cocok ama engine anda. Dan yg sangat penting ialah bikin dudukan atau kuncian spuyer di mulut karbu sekuat mungkin, jangan sampai spuyer tambahan ini ke-telen mesin…hahahahaa…..
silaken mencoba !!! 
nb: kelemahanya ialah jika pelampung karburator sedang “tidak waras ” maka sulit mendeteksi ketinggian pelampung dikarenakan bensin tidak akan terbuang ke saluran pembuangan .

Pengembangan mesin 2 Tak

Hey…kabar-kabari sih 2 tak mo digusur ??? ngga sesuai ama uji emisi, lingkungan hidup, dan polutan yg tinggi ( co2 ). Nah, pengembangan 2 tak berikut ini kali aja bisa membuka pikiran kita … bahwa teknologi 2 tak masih bisa berkembang.

Mesin 2 tak yg bersih dengan RetroFit Technology
=================================================
1. Conventional Two Stroke Technology

Two stroke cycle engines are rugged and inexpensive power sources which are favored in much of the developing world. Pollution from 2-stroke engines is due to the traditional method of fuel delivery. Carbureted 2-stroke engines use an air/fuel mixture to force exhaust products from the engine, a process referred to as scavenging. This results in a loss of over 35% of the fuel which is never burned in this system. As a result, the exhaust is high in hydrocarbons. To achieve a more stable combustion, conventional 2-stroke engines generally operate in a fuel rich mode, contributing to high levels of carbon monoxide emissions. Finally, conventional 2-stroke exhaust is high in particulate matter due to over oiling and unstable combustion.

2.Direct In-Cylinder Fuel Injection Two Stroke Technology

Drawings courtesy of Orbital Engine Corporation

New technology, which uses direct in-cylinder fuel injection (DI) results in more complete combustion of the fuel, resulting in better fuel efficiency and lower emissions. In a DI engine only air is used for scavenging because the fuel is injected directly into the cylinder later in the compression cycle.

Scavenging losses are greatly reduced, resulting in much lower hydrocarbon emissions. Due to the improved combustion stability, particulate emissions are reduced and the engines can be programmed to run leaner, resulting in reduced carbon monoxide emissions.

Some have proposed replacement of carbureted two-stroke engines with simple carbureted four-stokes as the solution to two-stroke emissions.� As can be seen from the table below, a direct injected two-stroke engine not only outperforms a carbureted four-stroke in performance and emissions, but also through fuel savings, provides a means for�quick payback of the initial cost.

A Comparison of a Direct Injected Two-Stroke and Carbureted Four-Stroke�when Compared to the Stock Carbureted Two-Stroke�

Website asli : http://www.envirofit.org/page.php?page_id=102

Perbandingan Mesin InLine-4 & V Twin

Inline-Four vs. V-Twin


The engine on the left, from an Aprilia Mille, shows how the weight is spread on a V-Twin: compact laterally, but spread out longitudinally. The Suzuki GSX-R1000 motor on the right, however, shows the exact opposite: wide laterally, but compact longitudinally.

There are lots of engine options for motorcyclists: Singles, Twins (in parallel, horizontally opposed and Vee configurations), Triples, inline-Fours and V-Fours, horizontally opposed flat-Sixes, rotaries and even jet turbines! Yet with all these options, the most popular engine types for motorcycles have been, and continue to be, V-Twins and inline-Fours. As the pinnacle of motorcycle technology has arguably swayed in favor of the 1000cc Superbike, let’s look at these two engine configurations up close and do a little compare-and-contrast examinations.

V-Twin sportbikes, from the high-dollar Ducati 999S to the low-buck Suzuki SV650S, have been making a strong resurgence in recent times. Excellent midrange performance courtesy of relatively high torque values means easy access to engine power in the hands of the average rider.

Side profile of a typical dohc, inline-Four engine, in this case, the Suzuki GSX-R1000.

But what makes this so? It’s not simply displacement, because in this comparison, we’re only looking at one-liter engines. Instead, the reason V-Twins have relatively more torque than an inline-Four has nothing to do with what you’d expect, such as the engine’s basic layout.

As CW Technical Editor Kevin Cameron explains, “For the most part, this is a function of valve area. The temptation in doing any sports or racing engine is to put into the head the largest valves that will fit. When this is done with a four-cylinder engine (250cc per cylinder in a one-liter Four), the result is more valve area per displacement than with a Twin of the same size (500cc per cylinder in a one-liter V-Twin). The result of this tactic is power concentrated at the top of the rev scale for the four-cylinder, and power concentrated in the middle for the Twin.”

Why is that? It all has to do with intake-charge velocity. When the intake valves open, the downward movement of the piston creates a vacuum (unless you’re running boost, but that’s a story for another day) in the cylinder, drawing a fresh air/fuel mixture into the combustion chamber. Internal-combustion engines are nothing more than glorified air pumps; so because our one-liter inline-Four and V-Twin engines have the same displacement, they therefore flow a similar amount of air per crank revolution. And that means the volume of the incoming charge will be similar in either engine type.

Because the charge volume is determined by displacement, that volume of air and fuel has to squeeze through the comparatively small carb throats/fuel-injection throttle bodies, intake runners, ports and valves of either configuration. Unlike rush-hour traffic, our orderly fuel and air molecules do this by traveling at high velocity. And because velocity increases as the cross-sectional area of a given passage decreases for a given volume, the cylinder heads of an inline-Four engine will have a naturally higher intake velocity than those of a V-Twin.

To take advantage of this fact, the engine designers strive to increase the intake velocity of the V-Twins to help them make more peak horsepower, while they try to decrease the intake velocity of inline-Fours so those engines can make more peak torque. What they end up with are two different engine platforms with very similar intake velocities.

“Every competent engine designer attempts to use the highest intake velocity he can get away with,” says Cameron. “In earlier times, sharp port angles and sudden changes of section interfered with flow, so the engineers came to believe that very large ports were necessary. But as better shapes came into being, they found that smaller ports could be made to flow just as much–if not more–air as before. This has been the legacy of the recent ‘flowbench’ period of port development–that small, well-shaped ports can flow plenty of air and improve torque by raising the average velocity in the port.”

We know, however, that Twins and Fours are not equal, and the reason is that there are still limitations that having more open valve area cannot solve. First, as intake velocity is increased, you begin to have a problem with the intake charge reaching supersonic speeds. A shock wave builds inside the intake tract and air begins to “back up” behind the wave. This severely impedes intake velocity and imposes the limit at which an engine can inhale. Additionally, an inline-Four has twice as many power pulses in any given time period than a V-Twin. What’s more, Twins have more frictional losses in the valve train, thanks to needing two sets of slightly larger cams, two cam chains, stiffer springs pushing on larger, heavier valves moving through more lift and, of course, all the bearings necessary to support all the extra hardware.

To counteract the fact that a V-Twin only produces half as many power pulses per crank revolution, you could simply make the engine rev higher. But even if you were able to ignore the frictional losses (which increase by the square in relation to cam rotation speed–and remember, you have four cams pushing on the aforementioned bigger valves and hardware), you’d run into an even bigger issue, in fact the biggest issue: piston speed.

V-Twins require more valve gear.Up there, you can see the dual timing-belt arrangement of a Ducati 999.

“What really determines how high an engine can rev is its peak piston acceleration, reached at TDC on every revolution. This is typically something like 7000 gs right now. Above that, there are problems with piston and ring reliability. Peak piston acceleration is directly proportional to stroke length, and to the square of rpm. In Superbike racing’s previous 1000cc Twin/750cc four-cylinder formula, this difference worked in favor of the Twins, even though the formula had been carefully set up so that the difference in displacement would be offset by the smaller engine’s shorter stroke and ability to rev higher. But in fact, the Fours could not rev as high as that formula assumed, because they reached that maximum piston acceleration sooner than thought.”

From an engineering standpoint, torque alone doesn’t make an engine configuration viable. That’s why packaging has played such a strong role in the success of the V-Twin. Not only are V-Twins narrower, but contrary to popular belief, they offer greater flexibility in fore-aft weight distribution due to their broader polar moment. Inline-Fours, on the other hand, are wider than V-Twins, obviously, but longitudinally shorter. In a front-to-rear plane, at least, that shortness is helpful in achieving the “mass centralization” goals that most sportbike manufacturers currently ascribe to. But the width of inline-Fours means they are generally harder to flick side-to-side than their V-Twin counterparts.

But wait! There’s more. By utilizing a shorter stroke, with smaller valves in smaller bores, Fours can rev much higher than Twins can. And because a smaller bore size means a smaller combustion chamber, the mixture is likely to burn more completely because the flame front has a shorter distance to travel; and that, in turn, allows the use of higher compression ratios. All of these factors equate to an engine that produces more peak horsepower than a Twin. No matter what sort of engine format you like, more power pulses per revolution, with more revolutions available over a given time period, equal more power.

Then there’s the subjective feeling that V-Twins provide. Producing one large power cycle per crank revolution, and staging those pulses at staggered intervals, not only yields a character that can be felt and heard, it punches all the right feel-good buttons.

Does that mean inline-Fours are better? Absolutely not. As Cameron puts it, “In simple terms, the four-cylinder should slaughter the Twin in terms of power, but when can you use it? For a few seconds at the end of the straights? Meanwhile, the strong midrange of the Twin can allow its rider to get a better jump off most turns, which gives an advantage most of the way down the next straight.”

What all this means is that, unless you’re involved in a serious racing program, it doesn’t really matter what motor layout powers your bike. Whether it’s a torquey V-Twin or a high-revving inline-Four, the bottom line is that a rider’s emotional preference is, as is often the case, the only real measuring stick that matters.

— Calvin Kim
http://cycleworld.com/index.cfm?siteaction=OnlineUpdate&id=46

How fuel engines work ?? < gimana cara kerja mesin bakar ? >

Buaahhh……pagi yg hot di surabaya !!!
I don’t know why, last night is so rainy … but this morning…
too clearly……right ???
——————————————————————
Oh,iya. saat gw buka buku2 catetan yg lama alias lawas…. i found this…suatu web ttg banyak model mesin yg pernah ada dan unjuk kerjanya. Dari yg biasa, sampai yg paling aneh. Just click at http://www.keveney.com.
contoh kecil di mesin 4 tak ciptaanya mas Otto nih —->